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I. Introduction

Scope

The objective of research was to develop and validate new computational algorithms for

solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are

new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more

accurate, and easier to use.

Approach

The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equa-

tions for compressible/incompressible flows are solved on structured hexahedral grids. The

Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is

based on a cell-centered finite-volume method augmented by a variety of numerical dissi-

pation models with optional total variation diminishing limiters. The governing equations

are integrated in time by an implicit method based on lower-upper factorization and sym-

metric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep

using two-dimensional indices in three dimensions. Convergence rates and the robustness

of the codes are enhanced by the use of an implicit full approximation storage multigrid
method.

II. Previous Results

Previous results obtained under this cooperative agreement were reported in MCAT Progress

Reports submitted in Feb. '93, Oct. '92, Apr. '92, and Oct. '89.

III. Current Work

A new computer program named CENS3D-MG has been developed for compressible flows

with discontinuities. Details of the code are described in Appendix A and Appendix B.

IV. Summary and Conclusions

The improved computational efficiency of the Navier-Stokes solvers by the use of a highly

vectorizable and unconditionally stable algorithm makes fine grid calculations affordable.

The resulting code is fast enough to be used as an aerodynamic design tool for advanced

subsonic and supersonic transport aircrafts.
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The multigrid method has been applied to an existing three-dimensional compressible Euler solver to
accelerate the convergence of the implicit symmetric relaxation scheme. This lower-upper symmetric Gauss-
Seidel implicit scheme is shown to be an effective multigrid driver in three dimensions. A grid refinement study
is performed including the effects of large cell aspect ratio meshes. Performance figures of the present multigrid

code on Cray computers including the new C90 are presented. A reduction of three orders of magnitude in the
residual for a three-dimensional transonic inviscid flow using 920 k grid points is obtained in less than 4 min on
a Cray C90.

I. Introduction

LTHOUGH unstructured grid methods have been used
successfully in solving the Euler equations for complex

geometries, structured grid solvers still remain useful for the

Navier-Stokes equations because of their natural advantages

in dealing with the highly clustered meshes in the viscous

boundary layers. Structured grid methods not only handle

reasonably complex geometries using multiple blocks but also

offer a hybrid grid scheme to alleviate difficulties which un-
structured grid methods have often encountered. Recent de-

velopments in structured grid solvers have been focused on

efficiency, as well as accuracy, since most existing three-di-

mensional Navier-Stokes codes are still not efficient enough to

be used routinely for aerodynamic design.

Multigrid methods have been useful for accelerating the

convergence of iterative schemes. Efficient Euler codes have
been developed by Jameson t using a full approximation stor-

age method of Brandt z in conjunction with the explicit Runge-

Kutta scheme. The explicit multigrid method has demon-

strated impressive convergence rates by taking large time steps

and propagating waves fast on coarse meshes. The explicit
multigrid method has been extended to the Navier-Stokes

equations by Martinelli. 3 Several explicit multigrid codes for

the three-dimensional Navier-Stokes equations have been de-

veloped successfully by Vatsa and Wedan, 4 Radespiel et al., 5
and Turkel et al.6

It does not seem to be pr(afit-able to consider an unfactored

implicit scheme for a multigrid driver since the implicit scheme

can take large time steps which are limited by the physics rather

than the grid. However, the multigrid method can improve the

convergence rates of factored implicit schemes in two dimen-
sions as demonstrated by Yoon 7 and in Refs. 8-10. The im-

plicit multigrid method has been implemented by Caughey ]2 to

the diagonalized alternating direction scheme, i t and by Ander-
son et alY to the three-dimensional alternating direction

scheme. Yoon 7 has introduced an implicit algorithm based on

a lower-upper (LU) factorization and symmetric Gauss-Seidel

(SGS) relaxation. The scheme has been used successfully in
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computing chemically reacting flows due in part to the al-

gorithm's property which reduces the size of the left-hand side
matrix for nonequilibrium flows with finite rate chemis-

try. t4-t6 A recent study t7 shows that the three-dimensional

extension of the method using a single grid requires less com-

putational time than most existing codes on a Cray YMP

computer. One of the objectives of the present work is to

accelerate the convergence of the lower-upper symmetric
Gauss-Seidel relaxation scheme in three dimensions by intro-

ducing a multigrid technique. The performance of the code is

demonstrated for an inviscid transonic flow past an ONERA

M6 wing on highly clustered grids.

II. Governing Equations

Let t be time; _ the vector of conserved variables;/_, P', and
(_ the convective flux vectors; and -_, Pv, and (_, the flux

vectors for the viscous terms. Then the three-dimensional

Navier-Stokes equations in generalized curvilinear coordinates

(/_, 71, _') can be written as

atL)+ a_(_"- $.)+ o.(P-t'.)+ ago - 0,) = o (1)

where the flux vectors are defined in Ref. 17. The Euler

equations are obtained by neglecting the viscous terms.

950

III. Lower-Upper Symmetric Gauss-Seidel
Implicit Scheme

An unfactored implicit scheme can be obtained from a

nonlinear implicit scheme by linearizing the flux vectors about

the previous time step and dropping terms of the second and

higher order.

[I + ez%t(Di_t + D_]3 + D_')I6Q = -_t_ (2)

where the residual/_ is

(3)

and I is the identity matrix. The correction _Y' + 1 _ _, is _.,

where n denotes the time level. DI, D r, and D r are difference
operators that approximate a t, a_, and a¢, respectively. ,,_,/),
and _7 are the Jacobian matrices of the convective flux vectors.

For a = IA, the scheme is second-order accurate in time. For

other values of _, the time accuracy drops to first order.

An efficient implicit scheme can be derived by combining

the advantages of LU factorization and Gauss-Seidel relaxation.

LD - ' U6_ = - At2_ (4)
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Here,

L = I + c_At(D_-_* +D_-B ÷ +DF_ + -.?4- -B--O-)

D= l + ou_t(_l ÷ - 21- + [3* -[3- + _* -dr-) (5)

U = I +_z_t(D_+71- + D;[3- +D(O- +A * +[3+ + _*)

where D(, D,-, and D:- are backward difference operators,

while D(, D_+, and D_+ are forward difference operators.

In the framework of the LU-SGS algorithm, a variety of
schemes can be developed by different choices of numerical

dissipation models and Jacobian matrices of the flux vectors.

Jacobian matrices leading to diagonal dominance are con-

structed so that + matrices have non-negative eigenvalues

whereas - matrices have nonpositive eigenvalues. For example,

(6)

where typically T_ and 7"_- 1 are similarity transformation ma-

trices of the eigenvectors of ,4. Another possibility is to con-

struct the Jacobian matrices of the flux vectors approximately
which yield diagonal dominance.

,21* = ½[.21 + k(_l)ll

[3- = ,/2[[3+ k([3)II (7)

dr* = ½ [dr + _(d3II

Here, the conserved variables are averaged at the cell faces to

evaluate the fluxes. The dissipative flux d is added to the
convective flux in a conservative manner.

+ _i.j.k+ !,: -- _i.j.k-'.':)-- ( di÷ :.:.j.k -- di-:.j.l¢

+di.j+v_.k-di.j-v,.k +di, j.,.,/_-di.j.,__/:) (13)

For simplicity, d_÷ ,/,.j., is denoted by d_. ,/, hereafter.

-(_ ._(0.,., - 0.)di+ ,/: = ei+

.(4) ,/,(_.i + 2 30.i +, + 3Oi Oi- 1) (14)-- _l+ -- --

The coefficients of the dissipative terms are the directionally
scaled spectral radii of the Jacobian matrices. The use of

directional scaling provides anisotropic dissipation to each
direction, resulting in improved performance on meshes with

high aspect ratio cells. Third-order terms formed from fourth

differences provide the background damping. First-order
terms are added by second differences near shock waves under
the control of a sensor _.

vi÷ '/: = max(;'i+ t, ui) (15)

where

"i = max(vf, _r) (16)

uPi = Ipi*l--2pi+Pi-II/(P_+t+2pi+pi-O (17)

vf= IT,+_-2T,+T_-tl/(Ti+t+2Ti+Ti_O (18)

where

_(_) = _ maxllX(,71)ll (8)

Here X(,4) represents eigenvalues of the Jacobian matrix .21,

and _ is a constant that is greater than or equal to 1. A typical

value of _ is 1. However, stability and convergence can be

controlled by adjusting x as the flowfield develops.

Here p and T are the pressure and the temperature. The

low-order dissipative coefficient is proportional to the sensor
as

_I;_ ) vl = K_2)r(/l)i+ v_÷ '/_ (19)

where r(,21) denotes the spectral radius of the Jacobian matrix

,21. The high-order dissipative coefficient is controlled by the
sensor.

IV. Vectorization

The algorithm is completely vectorizable on i+j +k =

const diagonal planes of sweep. This is achieved by reordering
the arrays.

_(ipoint, /plane) = _.(i, j, k) (9)

where/plane is the serial number of the diagonal plane, and

/point is the address on that plane. The number of diagonal
planes is given by

nplane = imax +jmax + kmax - 5

with the maximum vector length of

(10)

npoint = (jmax- 1)*(kmax- 1) (11)

V. Numerical Dissipation

The cell-centered finite-volume method is augmented by a

numerical dissipation model based on blended first- and third-
order terms. _a-2_ The finite volume method is based on the

local flux balance of each mesh cell. For example,

(12)

e(4) = max[0,x(4)r (_[)i + ,/_ _(2)i+ '/, - _i+ ,_] (20)

Here _¢2) and x,4_are constants which are different from other

in Eq. (8).

Dissipative terms for the coarse grids in the multigrid levels
are formed from second differences with constant coefficients.

Since the constant total enthalpy is not preserved in general

except for the Euler equations, the dissipation for the energy
equation is based on the total energy rather than the total

enthalpy. To reduce the amount of dissipation in the direction

normal to the body surface inside boundary layers, Swanson

and Turkeff ° provided additional scaling by multiplying a

spectral radius in the normal direction by a function of the

local Mach number. Although the Math number scaling tech-
nique may improve the accuracy of the Navier-Stokes solu-

tions, it has not been used for the Euler solutions. It has been

shown that the convergence rate on high cell aspect ratio

meshes can be enhanced by multiplying Martinelli's 3 scaling

factor based on local cell aspect ratio to the dissipative coeffi-
cients. However, this technique has not been used here be-

cause the aspect ratio based scaling factor seems to compro-
mise the accuracy of the solution, z2

VI. Multigrid Method

In the present multigrid method, part of the task of tracking

the evolution of the solution is transferred through a sequence

of successively coarser meshes. The use of larger control vol-

umes on the coarser meshes tracks the large-scale evolution,



withtheconsequencethatglobalequilibriumcanbemore
rapidlyattained.This evolution on the coarse grid is driven by

the solution of the fine grid equations. The solution vector on

a coarse grid is initialized as

Q¢O_= _,ShQh / S_ (21)2h

where the subscripts denote values of the mesh spacing param-

eter h, S is the cell volume, and the sum is over the eight cells

of the fine grid which compose each cell of the coarse grid.
After updating the fine grid solution, the values of the con-

served variables are transferred to the coarse grid using Eq.

(21). The pressure is calculated on the coarse grid using the

transferred variables. Then a forcing function is defined as

---(0))P:h = _.Rh(Q^) - R2,(_2_,. (22)

The residual on the coarse grid is given by

Rz_ = R2h(Q2h) + P_ (23)

For the next coarser grid, the residual is calculated as

R_ = R4h(Q4h) + Pah (24)

where

P4h = _R_ - R4h(Q_°h )) (25)
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Fig. 4 Convergence histories for the Euler and Navier-Stokes equa-
tions.

The process is repeated on successively coarser grids. Multiple

iterations can be done on each coarse grid. Finally, the correc-

tion calculated on each grid is interpolated back to the next

finer grid. Let _.2, be the final value of Q_ resulting from both

the correction calculated on grid 2h and the correction trans-

ferred from the grid 4h. Then

_ = Qh + l_(_2h - Q_) (26)

where Q_ is the solution on grid h before the transfer to the

grid 2h, and I is a trilinear interpolation operator. Since the
evolution on a coarse grid is driven by residuals collected from

the next finer grid, the final solution on the fine grid is

independent of the choice of boundary conditions on the

coarse grids.

VII. Results

To investigate the effectiveness of the full approximation

storage multigrid method in conjunction with the lower-upper

symmetric Ganss-Seidel relaxation scheme, transonic flow cal-
culations have been carried out for an ONERA M6 wing. The

frees(ream conditions are at a Mach number of 0.8395, and a

3.06-deg angle of attack. Since this is an unseparated flow

case, only the solution of the three-dimensional Euler equa-
tions is considered.



All ofthecalculationsareperformedwithouttheaidof a
coupleofconventionaltechniqueswhichhavebeencrucialto
ensuretherobustnessof themultigridmethod.The aspect
ratio based scaling factor for the numerical dissipation is not

employed because of the reason stated in Sec. V. The enthalpy
damping technique, which is not valid for the Navier-Stokes
equations, is not used here.

The treatment of the far-field boundary condition is based

on the Riemann invariants for a one-dimensional flow normal

to the boundary.

To study the effects of mesh cell aspect ratios on the conver-

gence rates, a low cell aspect ratio 129 x 33 x 33 C-H grid

(140,481 points) is used first. Figure 1 shows the distribution
of geometric cell aspect ratios of the first normal mesh cells at

the body from the leading edge to the downstream boundary.

Although geometric aspect ratios are less accurate than spec-

tral radius based aspect ratios, they seem to be useful. The cell

aspect ratios are of the order of 1 at the wing surface. Figure

2 shows convergence histories of the root-mean-squared resid-

uals which correspond to the density corrections. The residu-

als are normalized by their initial values. The chained line

indicates the single grid convergence history. The dashed line

indicates the multigrid convergence history using a four-level

V cycle with one iteration on each coarse grid. The solid line

indicates the muitigrid convergence history using a four-level

V cycle with two iterations on each coarse grid. Clearly, the
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two iteration strategy converges faster than the single iteration

cycle. Although not shown here, the three-iteration cycle does
not improve the performance due to a slight increase in work

per cycle. Hence, all of the following multigrid calculations

have been performed using the V cycle with two coarse grid
iterations. Four orders of residual drop requires 1022 and 156

iterations for single and multigrid, respectively. The conver-

gence has been accelerated by a factor of 6.5 by the use of the

multigrid method on this low cell aspect ratio grid.

A high cell aspect ratio 289 x 65 x 49 C-H grid (920,465

points) gives a severe test to the code. Here 65 grid points are
used in the normal direction. The distance of the first normal

grid point from the wing surface is 2.0 x 10 -6 times the chord

length. Figure 3 shows that the cell aspect ratios on the wing

reach as high as 10,000. This grid will be known as the fine
grid. Two more grids are prepared for a grid refinement study.

A 145 × 33 × 25 medium grid (119,625 points) is generated by
eliminating every other grid point from the fine grid. A

73 × 17 x 13 coarse grid (16,133 points) is generated from the

medium grid using the same process. Figure 4 shows single

grid convergence histories of both the Euler and the Navier-

Stokes equations on the medium grid. For the present attached
flow case, there is not much difference between the two. This

suggests that the convergence rate is controlled not by the

equations but by the grid.

Figure 5 shows good pressure coefficient agreement between
experimental data 23 and the multigrid computations on the
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Table 1 Performance on Cray computers (single processor)

Computer Grid CPU a Mflops Note

YMP Single 7.4 i70 Euler
YMP Multiple I 1.1 160 Euler

C90 Single 3.1 410 Euler

C90 Multiple 4.7 390 Euler

*CPU as per grid point per iteration.

Fig. 10
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fine grid at the 44% semispan station. Single grid convergence
histories are compared in Fig. 6 and show that the convergence
rate slows down significantly as the number of grid points
increases. Figure 7 shows that multigrid convergence histories
of the three grids are almost identical. Here, the coarse,
medium, and fine grids use two-, three-, and four-level V
cycles, respectively. The results demonstrate grid independent
convergence rates which are achieved by the multigrid method.

To study the effect of grid stretching on the convergence,
another fine grid whose first grid distance is 2.0 x 10 -_ is
generated. Figure 8 shows that the present numerical method
is insensitive to grid clustering despite the fact that cell aspect
ratios differ by an order of magnitude. The convergence rate
on the highly stretched grid appears to be slightly better than
the less stretched one for this case. Although not shown here,
the rate of convergence slows down significantly after the

Fig. I1
C90).
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Convergence histories on the fine grid (CPU time on a Cray

residual drops about five orders of magnitude on the highly
stretched grid.

Figure 9 shows that the convergence on the multigrid is
about 6.5 times faster than on the single grid in terms of
iterations. However, a muitigrid cycle requires more time per
iteration than a single grid cycle not only because of additional
operations for transfer and interpolation but because of the
short vector lengths on the coarse grids. As presented in Table
1, the overhead for the multigrid cycle is approximately 50°70.
Nevertheless, the present CENS3D code requires less than 5 _s
per grid point per iteration on a Cray C90 computer. With the
single grid mode, the code needs only 3/_s at the sustained rate
of 410 Mflops. The CPU times on a Cray YMP and a Cray
C90 are compared in Figs. 10 and l 1, respectively. The CPU
time is reduced by a factor of four by the use of the multigrid
method. Figure 11 shows that the residuals for the multigrid
drop three orders of magnitude in 50 iterations or 4 CPU min
and four orders in 160 iterations or 13 CPU rain on a Cray
C90.

Conclusions

An efficient three-dimensional multigrid code has been de-
veloped for inviscid compressible flows. The lower-upper sym-
metric Gauss-Seidel implicit scheme is shown to be an effective
multigrid driver in three dimensions. The present numerical
method appears to be insensitive to grid refinement or to
highly clustered grids with high mesh cell aspect ratios. Grid
independent convergence rates are achieved by the multigrid
method. A reduction of three orders of magnitude in the
residual for a three-dimensional transonic inviscid flow using
920 k grid points is obtained in less than 4 rain on a Cray C90.
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Abstract

The LU-SGS (lower upper symmetric Gauss Seidel)
a/gorithm has been implemented into the Compressible

Navier-Stokes, Finite Volume (CNSFV) code and validated
with a multizonal Navier-Stokes simulation of a transonic

turbulent flow around an Onera M6 transport wing. The
convergence rate and robustness of the code have been im-

proved and the computational cost has been reduced by

at least a factor of 2 over the diagonal Beam-Warming
scheme.

Introduction

The numerical simulation of the Navier-Stokes equa-

tions about complex and realisticaerodynamic configu-
rations with a structured grid requires the use of zonal

methods. A popular and fairlye_qcientnumerical scheme

used to solve the Navier-Stokes equations is the diagonal

implicit Beam-Warming algorithm [1,2]. A finitevolume
multi-zonal Navier-Stokes code, CNSFV, was developed

using this scheme. However the Beam-Warming scheme

uses approximate factorization to simplify the matrix in-

version process. As a result the convergence properties of

the scheme are dependent on the time step and time step

scaling chosen, and much user input is required to deter-

mine the optimum time step and time step scaling. For a

numerical simulation of a realistic aerodynamic configura-

tion, several dozen zones may be required. Choosing the
optimum time step and scaling for each of these zones be-

comes a tedious and time consuming process. For reasons
not understood yet, the finite volume formulation of the

diagonal Beam-Warming scheme suffers a severe time step

reszriction. Typically for constant time steps, the largest
CFL number that could be exercised were less than ten

and much less than that for the initial transients. With a

judicious time step scaling, the maximum CFL can be as

high as 50 to 75. The time step restriction is not so severe

with the finite difference formulation of the diagonal Beam-
Warming scheme, where the maximum CFL numbers can

be as high as 500. The time step restriction for the finite

volume form of the diagonal Beam-Warming scheme is se-

vere enough that the time step is too small to be practical
for an unsteady Navier-Stokes code.
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A numerical scheme without the above mentioned

time step restrictions is the LU-SGS (lower upper symmet-

ric Gauss Seidel) algorithm [3,4]. This scheme has been im-
plemented into the CNSFV code and v'Midated with a mul-

tizonal Navier-Stokes simulation of a transonic flow around

an Onera ._I6 transport wing.

Navier-Stokes Equations

The three-dimensional thin-layer Navier-Stokes equa-
tions in strong conservation law form in curvilineax coor-
dinates are

O,._ZQ + O(F + O,G + OeH

(i)

where

I pU

p,,u÷ _._p 1

+ ,vpI '
p_,U+ _:vp l

(e+p)U - _,Vp)

G =

pV I pW

puV+_'p I PuW+GV. p I

,,,,v I ,H= ,>,,w+c,vp I
pwv+_:v_ / ;_w+c:_'p ]

(_+ p)Y- v,vpi (_+ p)w - C,Vp}
(2)

The contravariant velocity components are defined as

U = Q(& + f:u + £_v+ ,,:_),
V = 13"(,/, + r/,u + ,/iv + r/,w),

W = _'(C,+ C.u+ C,v+ C:w)

and the viscous fluxes are given by

(3)

0

rnlu_ + rn2_

F_ = pTv" rnl u_ + rn_v

rnlw_ + m_,

rnirno_ + rn2(_=u + _v + _,w)

orn3u. ÷ rn477z

rn3un + rn4uy

rnlwn ÷ rn4r?=

m3rno, -_ m4(r/,u + rlyv + n,w)



with

/ ° /msu¢ + m6(,
msv< + m6_v

msw¢ + m6(..

msmo< + m6(Gu + Qv -_ Gw)

2 o
mz = r]_ + r]_ + r];,

m_ = (_:u_ + %v. + r],w,7)/3.

m6 = (Gu¢ + Qv< + Gw<)/3

The pressure is _ven by the equation of state

(4)

p = (7 - 1)(e - p(,,: + ,_ + _)/2) (6)

where 7 is the ratio of specific heats. The sound speed
is denoted by a. The nondimensional parameters are the
Reynolds number Re and the Prandtl number Pr. The
coefficientof viscosity# and thermal conductivityk are
decomposed intolaminar and turbulentcontributionsas
follows:

g = #t _ #t

k - # -( #I #_ )Pr Pr fi'_rl = Pr_

where Pr_ and Prt are the laminar and turbulent Prandtt
numbers and k = # with the nondimensionalization used in
this paper. The standard Baldwin-Lomax turbulent eddy
viscositymodel [5]ischosenfor thisstudy.

The nondimensionalparameterschosenforthiscode

are the same as thoseinthe CNS code [6].Denoting di-

mensionalquantitieswith a (i,the normalizingparameters

arethe freestreamdensitypoo,thefreestreamsound speed
aoc,the freestrea_nviscositycoefficient/_,and a charac-

teristiclengthI.

The metricsused abovehave adifferentmeaning fora
finitevolume formulationcompared tothefinitedifference

formulation of [6]. Referring to a typical finite volume cell
as shown in figure l, the finite volume metrics are defined
(see, for example, Vinokur :rl) a_

s,+z =s -_.,i+ "+s,,÷.;k• .,.. _ sy,_÷ zJ .

1
= _[(rr- r2)x (ra- r2)+ (r6- r2)× (r-- r2)]

s_+} = s,.t+½i + %a+½J + s.j_.}k (7)

1
= _[(rv- rs)x (r_- rs)+ (re- rs)x (rr- rs)]

The finite volume metrics represent the ce_ face area
normals in each of the curvilinear coordinates (_, V, r).
The)" are related to the metrics introduced in equations
(1 - 5) as follows

G,V = s,,j+½

,7:,V = s,,,,+½ (S)

_:_V = st,j+ ½

where z, = z,!l,z for i = 1,2,3. The volume of the com-
putational cell is given by

1
?"= _[(r4- r=) x (rz- rl).(rr- r_)

+(r= - rs) x (re - rl). (rr- re)

+(rs - r4) x (rs- rx)-(rr- rs)] (9)

and isthe finitevolume equivalentof the inverseJacobian
of the coordinatetransformationin the finitedifference

formulation of [6].

Numerical Method

The governing equations are integrated in time for
both steady and time accurate calculations. The unfac-
tored linear implicit scheme is obtained by lineaxizing the
flux vectors about the previous time and dropping second
and higher order terms. The resulting scheme in finite
volume form is given by

_,:,;+ _ ] _- %.;._ ._j + s:o.',_k

1
= _[(r- - r4)× (rs- r,)÷ (r3- r,)x (r7- r4)]

[I+ I)-_ h(£_ A" ÷6,_B" +_¢C '_-Re -_ (6_L " +_,M" ÷6¢N" ))]

•a_" = -P-_hR- (_0)



where the residual R" is

R" = {&F" + 6.G"+ QH" - a_-'(6_F$+ 6.G_+ QH_")]
(II)

The convective flux jacob\arts A, B, C and the viscous flux

jacobians L, M and N are defined in the appendix of [1].

Solving the above equation set by a direct matrix in-
version is still not practical for three dimensional problems.

However there are several indirect or approximate methods

available, including the diagonal Beam-Warming scheme

and the lower-upper (LU) factorized scheme of Yoon and
Jameson. In a previous study [8,9], the diagonal Beam-

Warming scheme was the basic flow solver algorithm for

the multi-zonal compressible Navier- Stokes finite volume

code, CNSFV. While the scheme worked well for finite dif-

ference codes, the performance deteriorated for the finite
volume code. The cause of the deterioration is not known,

but it is not isolated to the CNSFV code; several other

finite volume codes using ADI schemes seem to suffer from

the same type of deterioration. Because of this problem, a
LU scheme which does not seem to suffer the same problem

as the ADI schemes is incorporated into the CNSFV code.

A brief description of both the diagonal Beam-Wanning

and the LU scheme is presented.

Diaconal Beam-Warming; Algorithm..

With the use of approximate factodzation and diag-

onalization of the flux jacob\an matrices, a scalar pentadi-

agonai algorithm [2] can be derived from eqn (10) as

T,[z+ f-_hae&]x[z - ¢-_ha,a,]p[z + _,'-_ha¢&]

•TC'_,Q" = R" (1'2_)

where 6_ is a central difference operator and AQ" =

Q,--I _ Q, with Q-+I = Q(t" + h)" The viscous terms

are not included in the implicit side. The artificial dissi-

pation is included in both sides and is derived below.

The inviscid flux jacobians axe diagonalized as fol-

lows:

a&" = A = T,,&T_-1

aQG = B = T,A.Tj_

= = __;:\,-..¢.OcH C _ _'-:

The T_. 7",. TC are :he eigenvec:or matrices of A. B, C.

respectively with .\,, .\,, .\( as the respeczive eigenvalues.

Vv'e a/so have

.V =T["T.

p= T_'IT(

Each of the factors of the implicit operator of equa-

tion (12) has an artificial dissipation term added to sta-

bilize the central difference operator. The added term is

based on Jameson's nonlinear second and fourth order dis-

sipation and for the _-operator takes the form

_,_.-1 V_ [#;+_r(e(2) /%., .- e{4) A_ V_ A_ .)]AQ" (13)

with

e (2) = '_2rnax(w+l, 7i, 7j-1 ) (14)

IPj+_ - 2Pi + Pi-x]

7i = [p_+_ + 2p i +pj_xl
(15)

_(4) = maz(O,_:4 - e(2)) (16)

where _¢_.,1¢4 are constants of o(1), and A{, _7_ are the for-

ward and backward difference operators. 5i+ ½ is a modi-

fied spectral radius defined as

ai = ,_(1 + _/m,=(,_*l,;j,'_,/'_i)), (17)

,,, = [IUl+ ,_/4 + 4 + s_'] (18)
2

and where cell centered surface areas are used. e.g.

1

_,,_ = _(s,:..i+½+ *,j-i) (19)

The modified form of the spectral radius, equation

(17), is suggested by Turkel [10] to account for large aspect

ratio computational cells as for example in a viscous layer.

Similar dissipation terms are obtained for the ,7- and _-

operators. The dissipation terms added to the right hand

side of equation (10) are identical to those given above

except _hat AQ" is replaced by Q".

LU-SGS Scheme

The un/actored scheme of eqn (I0) is _ven in terms

of central differences for the implicit operator. It can also

be represented in terms of upwinded differences. Dropping



theviscoustermsintheimplicitoperator,equation(10)is
in terms Of upwind differences as follows:

ri.a-'_,-i, h(6[.4", -67.4-.< +6_B" -6_B- +6_C+ +6-_C-)1

•,',Q" = -9-=hR ° (20)

where 6,+ and 67 are the forward and backward difference

oper_tor__ Similarly, A + and A- are the aacobian matrices

which contain non-negative and non-positive eigenvalues,

respectively.

The Yoon and Jameson version of the LU scheme can

be obtained from the above equation by a simple reordering

of the matrix elements and approximately factoring into

two matrices. Define D, L, and b" to be matrices which

contain the diagonal, sub-diagonal and super-diagonal el-

ements of the implicit operator of equation (20), respec-

tively.

[D + £ + O]AQ- = -_'-lhR"

which can be factored into

[D + T]D-I[D + O]AQ" = -V-IhR"

Redefine L = D + L and U = D + b" to wield the final form

of the LU-SGS scheme.

LD-IUAQ" = -9-IhR" (21)

where

L = I+ _-I/(ff.4+ + 67B+ + _C + - A- - B- - C-)

D= I + f/-Ii(A-- A- + B'+- B- +C÷-C -) (22)

_"= _"+ e-'/,(ff.4 - + a:B- + a_c- + a+ + B÷ + c+)

A variety of LU-SGS schemes can be obtained by differ-

ent choices of the numerical dissipation models and aaco-

bian matrices of the flux vectors. In this study we use the

same artificial dissipation described for the diagonal Beam-

W'arming scheme. For robustness and to ensure that the

scheme converges to a steady state, the matrices should

be diagonally dominant. To ensure diagonal dominance,
the aacobian matrices can be constructed so that 4- ma-

trices have nonnegative eigenvalues and - matrices have

nonpositive eigenvalues. For example, the diagonalization

used for the Beam-Warming scheme can be used to obtain
the m matrices.

._: = T_A_._-_

s= =r,a_T;' (2a)

c_-= z_,ttr;'

Another method to obtain diagonal dominance is to con-
struct approximate Jacobian matrices:

A ± = [A ± _(A)I]/2

B ± = [.B ± ,5(B)1"]/2 (24)

c ± =[c ± _(c)z]/2

where _(A) = maz[lA(A)l] and represent a spectral

radius of the Jacobian matrix A with the eigenvalues

A(A). These eigenvalues are, e.g., A(A) = [U, U, U, U ±

_/S S 2 "a _ 4- s_ 4- =].,, where the metric terms are again de-

fined at cell centers by Eq. (19). Other methods ofincrea.s-

ing the diagonal dominance of the LU operator include the

addition some approximation of the viscous terms and the

artificial dissipation in the implicit operator [11].

The inversion of equation (21) is done in three steps.

The block inversionalong the diagonal iseliminated ifthe

approximate Jacobian of Eqn (24) are used instead of Eqn

(23). A Newton-type of iterationisobtained simply by set-

ring h = oo. Eliminating the time step from the algorithm

provides the practicaladvantage of side-steppingthe need
to find an optimal CFL number or the time stepscalingto

reduce the overallcomputational effortto achieve steady

state solutions. As mentioned previously, thisis an im-

portant consideration for a multizonal code. Iffirst-order

one-sided differencesare used, Eq. (22) reduces to

L = _3I- A + - B + - C ÷
j-l,k,I j,k-1 ,! j,k,l-I

D= _I (25)

U = fir 4- A'_+1,k, t + B_,k+l,t + C_k.t+I

where

= k(A) + _(B)+ _(c)

This algorithm requires only scalar diagonal inversions

since the diagonal of L or U = D. The true Jacobians

matrices of Eq. (23) may permit better convergence rates.

but require block diagonal inversions with approximately

twice the computational effort per iteration. This study
considers the scalar version without the viscous or artifi-

cial dissipation only.

The scheme is completely vectorizable on j 4- k 4- l =

constant oblique planes of sweep, Fig. 2. This can be

achieved by reordering the three dimensional arrays into

two-dimensional arrays as follows:



P(ip,p)--P(j,k,l)

where ip is the serial number of the oblique plane of sweep
and p is the address of point (j, k.l) in _ha_ plane. The
specific _lue of p in terms of (J, k, I) is

p=j+k+l-2

and the number of points in the plane p is

1
_, = _p(p- 1)

1[ . , .

-_L(P - jm_=)(p-3_.= - I)(I_-isign(1,p -3m_ - I))

+(p - k,_a_ )(p - k,,.z + 1)(1 + isign(1, p - k,,,z - 1))

+(p - l.,.=)(p- l,_=+ I)(I+ isign(l,p - l,._=- I))

-(p - k,.._ - 1,._z)(p - k_,_ - z..._ + 1)

•(I+ isign(1,p- k,,_az- l,,_:- I))

-(p - j_, - I,,,.,)(p - j=.z - l,,,._ + 1)

•(1 + isiqn(1,p - jm.z - l,n.: - 1))

-(P -- j,,_az - k,nat)(p - jm.z - k_z + 1)

•(l+isign(1,p-j_._ - km.: - 1)) l

The maximum number of points in the planes is n,,,_z =

np(p_), where P_t = (P'_: + 1)/2. The vector lengths

change from 1 at the beginning of the inversion sweep to a
maximum of np,,_., at the center of the sweep and bare to
1 at the end. While np,m.z can be large, the vector lengths
at the beginning and end of the sweep are very small and
inhibit efficient vectorization. Neverthelessfor reasonably-
sized zones, np,,,,_, is sufficiently large so that good vec-
torization can be ar.hieved. Other reordering sequences are
possible, but additional sweeps will then be necessary and
the overall performance of the LU-SGS inversion is less. In
addition, the oblique planes of sweep allow for very efficient
autotasking procedures on multi-processor computers; the
efficiency is less with other sweep directions.

Boundary Conditions and Zonal Interfaces

To complete the equation set boundary conditions
must be specified. With the use of curvillnear coordi-
nates the physical boundaries have been mapped into com-
putational boundaries, which simplifies the application of
boundary conditions. The boundary, conditions to be im-
plemented for external viscous or inviscid flows include (1)
inflow or far field. (2) outflow, (3) inviscid and (4) viscous

impermeable wall, and (5) symmetry conditions. For ex-
ternal tlxree-dimensional flow fields about closed bodies,
the topology of the grid usually introduces (6) grid singu-
larities which require special boundary conditions. The use
of zonal methods can avoid the generation of grid singu-
larities, but requires (7) special zonal interface boundary.
conditions. For compressible flows these zonal boundary
conditions must be conservative to maintain global con-
servation. In this study we consider nonconservafive in-
terfaces. However, conservative interzonal communication

has been developed and reported in a previous study [8].

A patched zonal procedure is used for the grid sys-
tem. The zonal interfaces are general three-dimensional
surfaces. The zoning procedure has a general capability
so that a face of one zone can be in contact with several
other zones. Information is translated between zones with

a bilinear interpolation procedure. The search method for
determining the interpolation coefficients is automatic in
that no user input is required other than identifying the
zonal faces in contact with each other. The grid topology
of the various zones is arbitrary and the zonal interfaces
are not, in general, mesh continuous. In this study we use
the ghost cell concept to obtain boundary, and interface
fluxes. Although there is no grid overlap at the zonal in-
terfaces, the ceil-centered conserved variables are reflected
across surface and zonal boundaries and are determined by
interpolating from the the adjacent zonal values. To deter-
mine the dissipative fluxes for the fourth-order dissipation
requires two ghost ceils. However, here we simply reduce
the fourth-order dissipation to second-order so that only
one ghost cell is needed.

Results

The test case chosen to validate the LU-SGS scheme
and the code is the attached turbulent transonic flow over

an ONERA M6 wing. This case has good experimen-
tal data [12] available and has been used extensively for
Navier-Stokes code validation. The reason for choosing
an attached flow case instead of a separated flow is that
the emphasis of this study is to validate the flow solver and
not the turbulence model. For attached flows the Baldwin-
Lomax model [3] is sufficiently accurate. The flow condi-
tons are M'o_ = 0.84, c_ = 3.06 °, Re,,oc = 11.72 x 10e. The
wing surfaces axe adiabatic and the fluid is a perfect gas
with "y = 1.4. The computational grid consists of a C-O
mesh split into four zones. There are two zones around the
wing, one each on the upper and lower surface of the wing.
Similarly, the wake region is split into an upper and lower
grids. This grid, in the single zone version, seems to be the
standard grid used for various validations of Navier-Stokes
codes, see, e.g., ref. 13. Figure 3 shows a partial view of
the grids and the zones. The total grid size is 193 x 34 x 49
points, and the individual zones consist of 73 x 34 x 49 and
25 x 34 x 49 points for the wing and wake zones, respec-
tively. The wall normal grid spacing at the surface is on
the order of _,+ = 4. This is sufficient to properly resolve
the boundary layer.

The converged results in terms of pressure contours
on the upper surface of the wing are compared with ex-
perimental data [12] are shown in Fig. 4. The agreement
between computation and experiment is good for the four
span stations shown. These results are comparable to the
results reported in ref. 13. The numerical predicted shocks
are slightly smeared as compared to experiment. This is to



be expected since the numerical scheme uses centrnl differ-

encing with nonlinear scalar dissipation. Increased mesh

resolution or an upwind scheme will shaxpen the shock

wave structure.

Figure 5 presents the performance comparison be-

tween the diagonal Bea_n-Warming scheme and the LU-

SGS scheme. These views show the convergence rate for

the upper wing zone with the two schemes. The first view
shows that the LU-SGS scheme is not that much faster

than the diagonal Beam-Waz'ming scheme in terms of iter-

ations required to reach convergence. However, in terms of

cpu times, the LU-SGS scheme is at least twice as efficient,

as shown in the second view.

Most of the gains in efficiency with the LU-SGS

scheme is in the reduced operation count. Table 1 shows

the unit cpu time (_sec/ gridpoint/ iteration) for both

schemes, as measured on the NASA-.,Lmes Cray C90 com-

puter. The unit cpu time for the right hand side (KHS) in-

cludes the calculation required for the KI-IS fluxes, bound-

ary conditions, interface interpolation, swapping data

in/out of machine core for each zone at each time step,

writeout of convergence data, and other miscellaneous op-
erations. This unit time is the same for both schemes at

4.5#set. The left hand side (implicit) unit cpu time is sub-

stantinny different. The times are 5.9/asec for the diagonal

Beam-Warming and 2.2/_sec for the LU-SGS scheme. The

total times are 6.7gsec and 10.4#see for the LU-SGS and

diagonal Beam-Wa.rming schemes, respectively. Further-

more, the diagonal Beam-Warming scheme required user

intervention to obtain the optimum time step size as well

as the time step scaling. The LU-SGS scheme uses no time

step scaling and an infinitely large time step as explained
in LU-SGS section above.

Conclusions

A multi-zonal compressible Navier-Stokes code has

been improved by replacing the implicit diagonal Beam-

Warming algorithm with the lower-upper symmetric Gauss
Seide[ scheme. With the new scheme the code is now much

more robust, requires no user intervention to determine the

optimum time step or time step scaling, converges faster,
and requires only half the cpu time to obtain the same level
of convergence. Most of the gain in efficiency is due to the

lower operation count required by the LU-SGS algorithm.

The algorithm and code have been validated with a tur-
bulent simulation of an attached transonic flow around an

Onera M6 wing.
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LHS 5.9_sec 2.2_se¢

xlinv

etainv

zetalnv

vpenta, etc

lusgs

(oDllque

ptanes of

sweeps)

RHS, 4.5_sec 4.51_sec

etc.

* average vector length ",,70, optimum length ,,,128

Table 1. Perftrace performance comparison of diag-

onal Beam-Warming and LU-SGS schemes on Cray C90

computer. (unit cpu time _sec/grid point/iteration)
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Fig. 5. Comparison of the convergence rates ver-
sus iteration and cou times between the diagonal Beam-
Warming and LU-SGS schemes.


